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Abstract

It is shown that if a non-flat spacetime (M, g) whose future c-boundary is a
single point satisfies R,V 2V® > 0 for all timelike vectors V2, equality holding
only if R, = 0, then sufficiently close to the future c-boundary the spacetime
can be uniquely foliated by constant mean curvature compact hypersurfaces.
The uniqueness proof uses a variational method developed by Brill and Flaherty
to establish the uniqueness of maximal hypersurfaces.

In 1976 Dieter Brill and Frank Flaherty (1976) published an extremely important
paper!, “Isolated Maximal Hypersurfaces in Spacetime”, establishing that maximal
hypersurfaces are unique in closed universes with attractive gravity everywhere. That
is, there is only one such hypersurface, if it exists at all. In an earlier paper, Brill
had established that in three-torus universes, only suitably identified flat space pos-
sessed a maximal hypersurface, so the existence of a maximal hypersurface is not
guaranteed. These results by Brill are important because maximal hypersurfaces are
very convenient spacelike hypersurfaces upon which to impose initial data; on such
hypersurfaces the constraint equations are enormously simplified. Furthermore, in
asymptotically flat space, foliations of spacetime by maximal hypersurfaces often ex-
ist, and the simplifications of the constraint equations on such a foliation make it
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1] regard this paper of Dieter’s as important because I've used its results in about ten of my own
papers. But the relativity community also finds this paper important. According to the Science
Citation Index, it has been cited 6 times in the period January 1989 through August of 1992, thus
gathering about 6 per cent of Dieter’s total citation count of 102 for this period. Most papers are
never cited ten years after publication, so this citation frequency is quite impressive.
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easy to numerically solve? the full four-dimensional vacuum Einstein equations for
physically interesting situations.

Constant mean curvature foliations give similar simplifications, and such foliations
often exist in closed universes. As Brill and Flaherty realized, their method can be
generalized to show that if such a foliation exists, then it is unique. What I shall do
in this paper is establish the existence of such a foliation near the final singularity
in the case that the singularity is an “omega point”. I shall conclude this paper
with a discussion on the connection between Penrose’s Weyl Curvature Hypothesis
and the existence of a foliation of the entire spacetime by constant mean curvature
hypersurfaces.

Let me begin with a

Definition. A spacetime (M,g) will be said to terminate in an omega point if its future
c-boundary consists of a single point.

I have discussed elsewhere (Barrow & Tipler 1986, Tipler 1986, 1989, 1992) reasons
for believing that the actual universe may terminate in an omega point. Misner’s
Mixmaster universe (Misner 1967) was specifically constructed to have a point c-
boundary in the past, though it is not known if in fact there is a vacuum Bianchi
type IX universe with such a c-boundary. Doroshkevich et al (1971) established
(using different terminology) that if such a vacuum solution exists, it is of very small
measure in the vacuum Bianchi type IX vacuum initial data. Vacuum solutions to
the Einstein equations which terminate in an omega point are known (Lébell 1931;
Hawking & Ellis 1973, p. 120 & p. 205; Budic & Sachs 1976), but they are all locally
flat.

Let me give two examples of S> spatial topology Friedmann universes which terminate
in omega points. Recall that the $® Friedmann metric is

ds* = —dt’ + a(t)[dx’ + sin® x(d6” + sin® 6dg")] Q

where 0 < x < 7,0 <0 <m,and 0 < ¢ < 2m. In the Friedmann universe, all null
geodesics are radial, with comoving coordinates given by ds? = 0 = —dt? + a?(¢)dx?,
which upon integration yields Rindler’s equation:

v-x=t [ 2

2 leave this split infinitive in for Dieter’s amusement. When I was his graduate student in
the early 1970’s, he was always finding them in my drafts of papers. (As a German, he naturally
had a better command of English than a native American.) But just before I received my Ph.D.
from him in 1976, he circulated a note announcing that, since he had just found a large number of
split infinitives in the Congressional Record, he would henceforth regard split infinitives as officially
correct American English.
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The future c-boundary is a single point if and only if the integral in equation (2)
diverges as proper time approaches its future limit ¢; = ¢,,,., since only in this case
will the event horizons disappear: light rays circumnavigate the universe an infinity
of times no matter how close to the c-boundary one is.

example 1: If a(t) = constant, the metric (1) represents the Einstein static universe.
Since the integral (2) diverges in this case because t,. = +00 and t,,;, = —00, both
the future and past c-boundaries are single points.

ezample 2: Let a(t) = sint. Then the integral (2) is lnl%:%é%L There are s.p.
curvature singularities (Hawking & Ellis 1973) at ¢; = 7 and at t; = 0. At either
of these limits, the integral (2) diverges, so this example has the same c-boundary
structure as the Einstein static universe: both the future and past c-boundaries are

each single points.

The Friedmann universe of example 2 does not satisfy the Einstein equations with
any standard equation of state. However, this example is worth analysis for two rea-
sons: first, because this a(t) can be smoothly joined to a Friedmann universe which
is matter and/or radiation dominated to the future of 107'® seconds (before which
a(t) = sint may be appropriate, for who knows what the stress-energy tensor is like at
extremely high densities), and second, because it nevertheless obeys all the usual en-
ergy conditions, thus showing that even in the case of the closed Friedmann universe,
one need not violate the energy conditions to get the future and past c-boundaries to
be single points. (This example is thus a counter-example to a conjecture of Budic
and Sachs (1976), that to have a single point as its c-boundary, ... a cosmological
model may have to ‘coast into the [singularity| so slowly it almost bounces’ corre-
sponding to a ‘near violation’ of the timelike convergence condition. (Budic & Sachs
1976, p. 28)”. But the metric of example 2 does not “nearly violate” the timelike
convergence condition.

To see this, let us compute the stress-energy tensor for the metric of example 2. The
mass density is

1 3 [a?+1 3 [cos?t+1 3
NETEEE_GE£=_( ) (———-——-— > o

- 8_7r sin? ¢

(1)2aa”+a’2+1_ 1
87 -

2
= 5o (1-2cot’t)
which is negative for |cot¢| > 7‘; — that is, near the singularities — and p — —oo
as t — 0 or 7. But we have

4 6
.“+P=—<._')>_ y  p+3p=—
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Since the weak energy condition requires (Hawking & Ellis 1973) 4 > 0 and p+p > 0,
the weak energy condition is satisfied. Since the strong energy condition (here, also
the timelike convergence condition) requires p + p > 0 and p + 3p > 0, the sirong
energy condition is satisfied. Furthermore, since both x4 + p and u + 3p are bounded
well away from zero at all times, the timelike convergence condition is never “nearly
violated”. The dominant energy condition (Hawking & Ellis, 1973) requires p > 0
and —p < p < 4, so the dominant energy condition is satisfied. Finally it is easily
checked that the generic condition is satisfied. The Ricdi scalar is R = 6(aa” + a® +
1)/a® = 6sin™2t, so the single c-boundary points are true s.p. curvature singularities
at t =0and at t = 7.

Note that examples 1 and 2 collectively suggest that if the closed Friedmann universe
is not the Einstein static universe, then negative pressures are required in order for
the c-boundary to be a single point. This can in fact be proven, but I shall omit the
proof.

Budic and Sachs (1976) were motivated by Misner’s model to prove some general
theorems on spacetimes with either the future or the past c-boundaries being single
points. Their theorems can be applied to either the past or the future c-boundary,
though they stated their theorems in terms of a single point c-boundary in the past
(since they were thinking of Misner’s model). Similarly, though I shall state the
theorems below in terms of an omega point — I shall be thinking of the final rather
than the initial singularity — the theorems can be trivially modified to apply to the
initial singularity.

Requiring that a spacetime end in an omega point imposes very powerful constraints
on the spacetime. For example,

Theorem (Seifert 1971): a spacetime which terminates in an omega point and which
satisfies the chronology condition has a compact Cauchy hypersurface.

This theorem was first stated by Seifert (1971), but unfortunately his proof is defective
(In his Theorem 6.3, Seifert claims that the existence of an omega point in both the
past and future directions is equivalent to the existence of a compact Cauchy surface).
Budic and Sachs (1976) have stated that the existence of an omega point in a future
and past distinguishing spacetime (Hawking & Ellis 1973) implies the existence of
a compact Cauchy surface. It is easy to check that Seifert’s Theorem holds if the
spacetime is stably causal, so I've stated his Theorem with this causality condition.

As a converse to Seifert’s Theorem, we have

Theorem I: If the future c-boundary of a stably causal spacetime consists of an omega
point, then for all points g sufficiently close to the future c-boundary, 01-(q) is also
a Cauchy surface.
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Proof. By Seifert’s Theorem, the spacetime admits a compact Cauchy surface. Since
the spacetime has a compact Cauchy surface, Geroch’s Theorem (Proposition 6.6.8
of Hawking & Ellis 1973), page 212), all Cauchy surfaces in the spacetime have the
same topology, and further, the spacetime can be foliated by compact diffeomorphic
spacelike Cauchy surfaces. Let S(t) represent such a foliation, where ¢ increases
in the future direction, and let V°(&,?) represent the timelike future-directed unit
vector field which is everywhere normal to S(t). Let A(¢) be any flow line of this
vector field. I claim that there exists ¢, such that dI=(A(¢,)) is a Cauchy surface.
Suppose not. Then there would exist another flow line u(t) of V*(Z,¢) which never
intersects I~ (A(t)), for any ¢. But then the flow line p(t) would define a different
future c-boundary point than A(¢), contrary to the fact that there is only one c-
boundary point. Thus for each A(t) in V*(&,t), there is a time ) for which 817 (A(¢))
is a Cauchy surface, for all ¢ > t5. Since the leaves of the foliation S(t) are compact,
sup(ty] = tc is achieved in the spacetime. Then 8I7(g) will be a Cauchy surface
provided q is any event to the future of S(i¢); i.e., ¢ € I*(S(t¢). QED

We thus know that I~(q) is a Cauchy surface for ¢ sufficiently close to the omega
point, so in principle, all information is available at q. This property allows us to
show that a foliation of spacetime by constant mean curvature hypersurfaces exists,
at least sufficiently near the omega point.

Theorem 2: If a non-flat stably causal spacetime (M, g) satisfies R, VeVt > 0 for all
timelike vectors V%, equality holding only if R, = 0, and (A4, ¢) has an omega point,
then there exists a point p € M such that through p there passes a ¢'>* Cauchy
surface S with constant mean curvature, and further, I*(S) can be uniquely foliated
by €% Cauchy surfaces with constant mean curvature.

That is, a spacetime which satisfies the timelike convergence condition and which
ends in an omega point has sufficiently near the omega point a foliation by compact
Cauchy surfaces with constant mean curvature. However, the entire spacetime might
not have such a foliation; the foliation is guaranteed to exist only for that part of
spacetime sufficiently close to the omega point. The meaning of “sufficiently close”
is made precise in the proof of Theorem 1 above. (A C** Cauchy surface (Bartnik
1984) is one which is C? with these second derivatives being Holder continuous of
order a.)

Proof: Bartnik (1988) has shown that if for any point p in (M, g), the set M —I*(p)U
I~(p) is compact, then there is a spacelike C** constant mean curvature Cauchy
surface through p. I shall need two Lemmas to combine with Bartnik’s result:

Lemma 1: If the future c-boundary of a spacetime (M, g) which satisfies the chronol-
ogy condition is an omega point, then the achronal boundary 0I%(p) is a Cauchy
surface for any point p in the spacetime.
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Proof. Suppose not. Then there is a future- and past-endless timelike curve 4 which
never intersects 1% (p), which, since the chronology condition holds, is non-empty
and is generated by null geodesic segments at least some of which intersect p. If (1)
vy NI~(8I*(p)) # 0, or (2) yNI7(8I*(p)) = 0 and y N I*(8I*(p)) = 0, then I7(7)
would not intersect I*(p), so I~ (y) defines a different c-boundary point than does a
future-endless timelike curve which eventually enters I*(p). Thus there are at least
two distinct c-boundary points, contradicting the hypothesis that there is just one
future c-boundary point.

The other possibility, which we now elininate,is v N I*(p) # 0, but yNoI*(p) =0
Since v N I*(p) # 0, there exists a timelike curve 8, from p to some point ¢ € 7.
Consider the sequence of timelike curves 3, as the point ¢ moves into the past
along v through a sequence of points ¢;. This sequence defines a subsequence which
converges to some causal curve 3 in I+(p) (since I*(p I*(p) is closed). However, 3 must
be disconnected since if it were connected, yUS would be a connected curve, contrary
to the assumption that v is past-endless. The connected subset of B — call it ﬂp
which ends in the point p is thus future-endless, and since I+(y) NI~ (ﬂp) = (), the
causal curves 4 and ﬂp define different TIPs, contrary to the assumnption that there
is just once TIP in (M, g). QED.

Lemma 2: If the future c-boundary of M,g) is a single point and the chronology
condition holds, then 8I*(p) is non-empty and compact for every event p in the
spacetime.

Proof: If the chronology condition holds, then p € 3I*(p). By the remarks on page
188 of Hawking and Ellis (1973), 8I*(p) is generated by null geodesic segments which
either have no endpoints or have endpoints at p. Thus all the null geodesics from p
into the future are generators of 9I*(p). If every null geodesic generator of dI*(p)
from p leaves 1% (p) in the future, then 8I*(p) is compact, since one can put on the
collection of null geodesic generators of 3/*(p) an affine parameterization such that
the length of the segment of the null geodesic in dI*(p) from p varies continuously
with the null direction into the future from p, and the collection of null directions at
p is compact (actually, a 2-sphere). Thus the only way that part of 31 (p) for which

It (p) N {p} # 0 could fail to be compact is for there to exist a null geodesic v of
OIt(p) which never leaves d1*(p).

But then I~ (y) would define a TIP which is distinct from a TIP generated by any
future-inextendible timelike curve which crossed 4 from I~(v) into I*(p). But this
would mean more than one TIP, contrary to assumption, so that part of 8I*(p) for
which 8I*(p) N {p} # 0 is compact for all p, and also all null geodesic generators of
OI*(p) from p must eventually leave dI*(p).

We now eliminate the possibility that 7*(p) has a null geodesic generator 8 which
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does not intersect p. Suppose it does, and let q be a point of 8 with normal neighbor-
hood N. Then there is a timelike curve from p to any point in N N I'*(p), (which is
non-empty since 8 C I*(p).) Consider a sequence of points ¢; in N NI*(p) converg-
ing to ¢. This sequence defines a sequence of timnelike curves §; from p to ¢;. If this
sequence of timelike curves converged to a single connected causal curve, it would have
to be a null geodesic with past endpoint at p, which is impossible by definition of 3.
Since locally (in any convex normal neighbourhood) the sequence converges, it must
converge globally to at least two (possibly more) distinct disconnected causal curves,
the one terminating at p being future-endless. This future-endless curve, call it 3,
defines a TIP which is different from at least one TIP defined by some future-endless
timelike curve in I*(8), since by construction I=(8) N I*(8) = 0. QED

To continue the proof of Theorem 2, recall that by Theorem 1 above, 31~ (p) is a
compact Cauchy surface for all points p sufficiently close to the omega point. Together
these imply that M — [I*(p) U I~ (p)] is compact for p sufficiently close to the omega
point. (The set M — [I*(p) U I~(p)] is closed since both I*(p) and I~(p) are open).
Also, for any foliation of (M, g) by spacelike hypersurfaces S(t), there will times ¢,
and ¢y with ¢, > o such that 8I*(p) C I7(S(t;)) and 81~ (p) C I*(S(to)). Hence,
the closed set M — [I*(p) UI~(p)] is contained in the compact set M — [I*(S(¢,)) U
I=S(t0))] =~ S(t) x [0,1], for any fixed {, and so is compact.) Thus through every
point sufficiently close to the omega point, there passes a spacelike C?* constant mean
curvature Cauchy surface. Brill and Flaherty (1976), and Marsden and Tipler (1980)
have modified a theorem by Brill and Flaherty (1976) to show that any constant
mean curvature compact Cauchy surface on which the constant mean curvature x?,
is non-zero, is unique if the timelike convergence condition holds. Following Geroch
(see Hawking and Ellis 1973, p. 274), Marsden and Tipler (1980) have shown that in
all non-flat spacetimes with R,;V2V?® > 0, equality holding only if R, = 0, compact
Cauchy surfaces with x®, = 0 are also unique. Hence, there exists a point pin M such
that through p there passes a C'2* Cauchy surface S with constant mean curvature,
and further, I*(S) can be uniquely foliated by Cauchy surfaces with constant mean
curvature. QED.

The non-flatness and Rq,V2V? = 0 only when R, = 0 assumptions were only needed
for uniqueness of the maximal hypersurface (if in fact any exists). The existence of a
constant mean curvature compact Cauchy surface foliation follows merely from the
timelike convergence condition and the existence of the omega point. If both the
future and past c-boundaries are single points — as in examples 1 and 2 — then
the proof of Theorem 2 shows that the entire spacetine is foliated by constant mean
curvature compact Cauchy surfaces.

Budic and Sachs (1976) have shown that if the total spacetime volume [ /=g d*z of
an omega point spacetime is finite (as it would be in example 2, for instance), then
there is another natural foliation Sgs(t) of (M, g) by spacelike hypersurfaces, namely
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for a given ¢, the value of [;4(, v/—g d*z is the same for each point p € Sps(t). Budic
and Sachs show that this foliation is C'!, and a modification of the proof of Theorem
2 shows that sufficiently close to the omega point, the hypersurfaces Sps(t) will be
compact Cauchy surfaces. The question then arises, what is the relationship — if any
— between these two natural spacelike foliations of (M, g)? In example 2, the two
foliations are exactly the same, but in general this will not be the case. For instance,
if (M, g) is the spacetime of example 2, then M — J~(p) for any point p € M is a
spacetime with an omega point which can be foliated with constant mean curvature
Cauchy surfaces only to the future of p, while Spgs(t) foliate the entire spacetime
(though with Cauchy surfaces only to the future of p).

Budic and Sachs (1976) show that M, the spacetime with its c-boundary, is second-
countable and metrizable, so some constraints are imposed on the initial singularity
by the requirement that the final singularity is an omega point. I conjecture that if
we require that the entire spacetime be foliated by constant mean curvature Cauchy
surfaces which everywhere coincide with the Sps(t) hypersurfaces, then the spacetime
must be spatially homogeneous.

Penrose’s Weyl Curvature Hypothesis (Penrose 1979), namely that time is defined so
that a physical spacetime’s “initial” singularity is characterized by the vanishing of the
Weyl curvature as one approaches the initial singularity (and the “final” singularity
is characterized by the dominance of the Weyl curvature over the Ricci curvature) is
another proposal to connect the initial and final singularities. Tod (1990) conjectured
and Newman (1991) proved (at least for the v = £ case) that if the Weyl curvature
vanished at a singularity (which is “conformally compactifiable”), then the spacetime
was necessarily Friedmann everywhere. Goode et al (1985, 1991, 1992) have restated
the Weyl Curvature Hypothesis to mean that

i Cabcdcabcd

TS0+ RabRab = 0 (3)

at an “initial” singularity. Goode et al(1992) have shown that many of the standard
Cosmological Problems (flatness problem, horizon problem, etc.) can be solved if one
imposes this modified Weyl Curvature Hypothesis. However, they do not propose
strongly believable reasons why the Weyl Curvature Hypothesis should be true.

Perhaps by connecting these two approaches to connecting the initial and final singu-
laries a strongly believeable reason can be found. Goode et al and Tod, in their defini-
tions of “conformally comfactifiable” or “isotropic” singularity, require the existence,
near the initial singularity, of a foliation of spacetime by spacelike hypersurfaces, but
they do not require that the foliation be one of the “natural” ones discussed above.

However, suppose we require that globally, the Second Law of Thermodynamics must
always hold: the total entropy of the universe at time ¢; must always be greater than
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or equal to the total entropy at time ¢; whenever ¢; > ¢;. Clearly, this inequality
cannot hold globally for all foliations, since locally we can always decrease the entropy
at the expense of an even greater entropy increase at another spatial position, and
we can use this fact to construct a foliation of spacetime by spacelike hypersurfaces
in which the above entropy inequality was violated, at least for a short time. But
it conceivably might be true for one (or both) of the natural foliations described
above — if the modified Penrose Weyl Curvature Hypothesis holds. If the entropy
inequalities do not hold for some natural foliation, then we would be forced to admit
that the Second Law of Thermodynamics simply does not always hold globally (or is
inconsistent with general relativity), an admission we should be loath to make.

The modified Penrose Weyl Curvature Hypothesis would have to hold for two reasons.
First, to ensure that the purely gravitation degrees of freedom — gravitational waves
— when degraded into heat, do not by themselves violate the Second Law of Ther-
modynamics. Second, to ensure the global existence of both of the above foliations:
I conjecture that if the initial singularity is “isotropic” in the sense of Goode at al
and “conformally compactifiable” in the sense of Tod, then the foliation of constant
mean curvature Cauchy surfaces and the Budic-Sachs foliation by Cauchy surfaces
— which must exist near an omega point — can be extended globally to the entire
spacetime.

If so, then the modified Penrose Weyl Curvature Hypothesis would be equivalent to
requiring the global validity of the Second Law of Thermodynamics. Here would be a
strongly believable reason for accepting the Weyl Curvature Hypothesis and its res-
olution of the Cosmological Problems! This modified Penrose Curvature Hypothesis
also gives another reason for studying constant mean curvature foliations, a research
topic to which Dieter Rolf Brill has contributed so much.

It is a pleasure to thank P.C. Aichelburg, J. D. Barrow, R. Beig, H. Kiihnelt, H.
Narnhofer, R. Penrose, and H. Urbantke for helpful discussions. My research was
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