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Bell has recently revived the pilot wave interpretation of de Broglie and Bohm as a possible scheme for interpreting 
wave functions in quantum cosmology. I argue that the pilot wave interpretation cannot be applied consistently to systems 
whose wave functions split into macroscopically distinguishable states. At some stage the pilot wave interpretation must ei- 
ther tacitly invoke wave function reduction in the same manner as the Copenhagen interpretation, or else abandon Iocality 
by requiring physical particles to move faster than light. Consequently, the many-worlds interpretation is the only known 
realist interpretation of the quantum mechanical formalism which can be extended to quantum cosmology. 

Interpreting the wave function is one of the most 

difficult problems in quantum cosmology. There are 
several reasons for this. First, most interpretations of 

the wave function in non-relativistic quantum mecha- 
nics require a clear division of the total physical sys- 

tem into the observer and the observed, with the form- 
er standing clearly outside the latter. Such a split is 
quite impossible in cosmology, for there is nothing 
outside the universe. Second, the interpretation of 
the absolute square of the wave function as a proba- 

bility density is usually accomplished by analyzing not 
a single system, but rather an ensemble of similarly 
prepared systems. Again, such a procedure is impossi- 
ble in cosmology, because there is only one universe. 

Since no direct appeal to experiment can be made 

in quantum cosmology to interpret the wave function, 
one must either argue that the interpretation arises 
from the wave function itself - as is argued by many 
proponents of the many-worlds interpretation [l-3] 
_ or one must find an interpretation that is consistent 
with a priori assumptions about the nature of the enti- 
ties constituting the universe. For example, each class- 
ical cosmological model of general relativity describes 
time evolution of what is essentially a single classical 
system: a universe can be considered as a point in su- 
perspace, and the evolution of such a point is a trajec- 
tory in superspace governed by a generalized geodesic 
equation with a force term. Thus, if an interpretation 
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of the wave function could be found which could re- 

produce all the usual statistical implications of quan- 
tum mechanics by invoking only the classical entities 

of particles acting under the influence of forces, this 
interpretation could be extended immediately to the 

wave function in quantum cosmology. The interpre- 
tation problem would disappear, since nothing funda- 
mentally new would be added by quantization. 

Such a “classical” construction of quantum mecha- 
nics was independently invented by de Broglie [4-61 
in the 1920’s and by Bohm [7-l I] in the 1950’s. 
This construction, called the pilot wave interpretation, 
has recently been resurrected by Bell [ 121 for the ex- 
press purpose of providing quantum cosmology with 
its long-sought wave function interpretation. Unfortu- 
nately, I shall show in this paper that the pilot wave 
interpretation does not quite attain its goal of provid- 
ing a purely classical picture of quantum phenomena. 
Like the Copenhagen interpretation, the pilot wave 
interpretation must at some point suspend the evolu- 
tion equations and demand wave function collapse, or 
else force physical particles (not merely pilot waves) 
to travel faster than light. Consequently, the pilot wave 
interpretation cannot be used to interpret wave func- 
tions in quantum cosmology. 

To see the difficulty, let us review the salient fea- 
tures of the pilot wave interpretation. It will be suffi- 
cient for our purposes to restrict attention to the one- 
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particle Schr6dinger equation (we set h/27r = 1): 

iO~b/Ot = -(1/2m)V2~b + V(x)qJ. (1) 

If  we substitute 

= R exp(iS) ,  (2) 

where the functions R = R(x,  t) and S = S(x, t) are 
real, into (1), we obtain 

OR~at = - (1 /2m)  [R V2S + 2VR" VS] , (3) 

3S/Ot = - (VS)2/Zm - IV(x) - (1/2m)/VZR/R] . (4) 

Eq. (3) can be re-written in terms ofqJ~k* = R 2 = O, 
a quantity which in the conventional interpretation 
is the probability density, as 

ap/at + V . (p [VS/m)] = 0 .  (5) 

Now the system of  equations (4) and (5), a system 
which is completely equivalent to Schr6dinger's equa- 
tion (1), can be given a classical interpretation. Eq. (4) 
is just the Hami l ton-Jacobi  equation for a particle o f  
mass m and velocity VS/m,  moving in the potential 

V(x) - (1/2m)VZR/R . (6) 

The additional potential term - (1 /2m) (72R/R)  was 
named the "quantum potential" by Bohm [7,8]. From 
standard Hami l ton-Jacobi  theory, any ensemble of  
particles, each of  mass m and each with initial velocity 
VS/m, will move on trajectories normal to the S = 
const surfaces. Such an ensemble of  non-interacting. 
particles will define a particle density O, which will 
satisfy an equation of continuity. The appropriate 
equation of continuity is precisely (5), so it is natural 
to regard the system of equations (4) and (5) as giving 
the spacetime evolution of  such an ensemble. Thus 
the pilot wave interpretation is a theory of the evolu- 
tion of both single particles, and ensembles of  non- 
interacting particles. A single particle in the pilot wave 
interpretation actually has spacetime coordinates x(t) 
and velocity 

,'~ =VS/m . (7) 

The quantities x and x are termed "hidden variables". 
The system of  equations (4), (5) and (7), subject to 
the initial conditions 

o(x,  o)  = p0(x), (8) 
S(x, O) =-S(x),  (9) 

x ( 0 ) - x ,  (10) 

completely defines the physical system consisting of  
either a single particle or ensemble of  particles acted 
on by the potential (6), and the time evolution of this 
system. 

As emphasized by Keller [13], probability is sup- 
posed to enter the theory through incomplete know- 
ledge of initial data or through the use of  ensembles, 
just as in classical statistical mechanics. I f  the former, 
the quantities P0(x) and S(x) are asserted to be known 
exactly, but x 0 is not, which is why x(t)  and.~(t) are 
called "hidden variables". In a general statistical theo- 
ry, an initial probability distribution q~0(x) o f x  is as- 
sumed to be given, and by the law of conservation of 
probability, this probability distribution ~ x ,  t) as a 
function of  time satisfies 

Odp/Ot + 17. (dpVS/m) = 0 ,  (11) 

~(x, o) = Oo(X), (12) 

where the S(r, t) in eq. (11) is the same S(x, t) that 
appeared in (4) and (5). 

The key difficulty with the pilot wave interpreta- 
tion is that although O(x, t) and ~(x, t) satisfy the 
same equation, they need not be equal, since they in 
general satisfy independent initial conditions (8) and 
(12), respectively. The function O0(x) represents the 
initial value of  a real quantum mechanical field which 
controls the evolution of  a particle or ensemble, 
while q~0(x) represents the initial probability or en- 
semble distribution o f x .  As pointed out by Keller 
[13], in standard statistical mechanics ~0(x) is arbi- 
trary and need not equal O0(x). Only if one imposes 
~Po(X) = O0(x) as an additional postulate in the pilot 
wave interpretation can one truly recover the usual 
statistical interpretation of  O(x, t). Bohm [9] claims 
to derive the equality ~0(x) = P0(x). He asserts that 
the long-time evolution of the system of eqs. (4), (5), 
and (7) would result in ~ x ,  t) approaching O(x, t) as 
t --> +0% no matter  what ~0(x) was. Indeed, one might 
expect such asymptotic properties of  the system (4), 
(5), and (7), since dp(x, t) ~ O(x, t) in classical statisti- 
cal mechanics if p(x, t) is the equilibrium distribution. 
However, I shall show Bohm's derivation to be incor- 
rect. 

It  will prove instructive first to review a simple ex- 
ample which illustrates why ~ x ,  t) need not equal 
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p(x, t). Consider a stationary state. Such a state will 
have a wave function of  the form if(x, t) = q~(x) × 
exp( - iEnt ). For many physical situations - e.g. 
hydrogen atom S-states and standing waves in a one- 
dimensional box - the function xP(x) is a real number, 
so if(x) = R(x ,  t) and S(x, t) = O. For the standing 
wave in a one-dimensional box of  length L, R(x ,  t) 
= R(x)  = (2//,) 1/2 sin(Trroc/L). We have p = V S / m  = O, 
so a particle of  non-zero energy E n does not move. As 
emphasized by Einstein [ 14] this is a rather paradox- 
ical result, because it is true even if the mass m and 
the quantum number n are large enough for the quan- 
tized particle in the box to be considered a classical 
object. This would apparently violate the principle of  
correspondence, because a particle of  non-zero energy 
in a box wouM move. Nevertheless, p = 0 is consistent 
with the interpretation of  a particle of  energy E n mov- 
ing in a potential given by (6), because V(x) = 0 but 
( - 1 / 2 m ) ( V 2 R ) / R  = n27r2 /2mL 2 which is equal to E n. 
Thus the particle does not move because all of  its en- 
ergy is in the form of "quantum" potential energy. In 
his reply to Einstein's criticism, Bohm claimed [8,15] 
the correspondence principle was not violated because 
an observation of  a particle in the box could be carried 
out only by changing the particle's standing pilot wave 
into a traveling wave packet which gave the expected 
classical notion, on the average. 

Bohm's argument could hold only if ~b0(x ) ~ p(x) 
= (2/L) sin2(rmx/L). Otherwise the notion of  the wave 
packet need not have any correspondence with the 
average motion of  the particle. Furthermore, note that 
the explicitly quantum mechanical forces, given by 
( -1/2m)~72R/R,  clearly do not act in this simple ex- 
ample to make ~ x ,  t) approach p(x, t). The quantum 
force is zero everywhere, since the quantum potential 
is a constant. A zero force cannot change the initial dis- 
tribution of  particles in a box. One might think that a 
violent change in the quantum potential could cause 
~ x ,  t) to approach p(x, t). One often sees claims by 
pilot wave supporters [7,8,12] (see also ref. [6] ) that 
such violent changes will occur at zeros of  the wave 
function, where R(x,  0 = O. But zeros of  R(x, t) need 
not result in a divergence in the quantum potential 
- ( 1 / 2 m ) V 2 R / R ,  because V2R could also approach 
zero at the zeros o f R .  The behavior X72R ~ 0 as R -~ 0 
is seen to occur by direct calculation in our simple one- 
dimensional box example; the quantum force is zero 
at all nodes. In fact, if we make the standard require- 

ment that the fundamental physical fields - in the 
pilot wave interpretation these include V(x, t), R(x ,  t) 
and S(x, t) - be everywhere C 2, then eq. (4) would 
imply that the quantum potential is also C 2 and hence 
bounded everywhere, including the wave function ze- 
ros. If the system of equations (3),(4) lead to singular- 
ities in one of  the fields V(x, t), R(x ,  t), or S(x, t) 
which were not singular points of  ~(x, t) - and it is 
possible this could occur [ 16] - thiswould give a pure- 
ly mathematical reason to reject the pilot wave theory. 
I will assume, however, that this problem does not a- 
rise. 

If S(x, t) is smooth, then we can show that ¢(x, t) 
does not approach p(x, t) if P0(X ) :/: ~0(x), unless 
they both approach zero for all x. This follows im- 
mediately from (5). If S(x, t) is smooth, then the flow 
lines o f (5 )  never intersect, so using (7) we can write 
(5) as 

Op/~t + o ' V p  + (p /m)V2S = 0 ,  

or 

Dp/Dt = - ( p / m )  ~72 S , (13) 

which can be integrated along the flow lines to give 

t 2 drY. p(x(t),  t) = po(x) exp(- f ~-s(x(z), r) (14) ! 
0 

Since ¢(x, t) and p(x, t) both satisfy (13) which is lin- 
ear, the quantity It(x,  t) - p(x, t) I would have a non- 
zero lower bound on every flow line for which I~0(x) 
- P0(x)l :/: 0, and along which the integral .frO V2 dr  is 
bounded. But this integral will be bounded unless 
~ x ,  t) and p(x, t) both approach zero along that flow 
line. In particular, ~ x ,  t) and p(x, t) are not close to 
zero at the present time, at least for most x in the lab- 
oratory. Because of  the spreading of  wave packets, 
these functions may approach zero as t ~ +.% but they 
are definitely non-zero today. Thus, if P0(X) :/: ¢0(x) 
for some x, this difference would have persisted until 
the present epoch. I conclude that Bohm's argument 
to the contrary [9] is incorrect. Freistadt has also ex- 
pressed doubts [ 17] about the mathematical validity 
of  Bohm's proof. 

It should be emphasized that the results of  taking 
ensemble averages in the pilot wave interpretation is 
utterly different from the results obtained by the same 
procedure in statistical mechanics. In the latter case, a 
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slight change in tile microscopic initial conditions 
would not lead to any observable change in any ma- 
croscopic quanti ty such as the temperature or tire pres- 
sure. Indeed, it must not if such procedures as coarse 
graining or assuming random, small, external perturba- 
tions on the system (tile usual way of  proving O ~ P 
in statistical mechanics [18,19] ) are to be used. How- 
ever, as Bohm's reply to Einstein's criticism makes 
clear, a tiny change in the initial conditions - a small 
perturbat ion due to the measurement - can cause an 
enormous change in a macroscopic observable, the 
particle velocity. Befor the measurement, a classical 
object was not moving. After the measurement, it is 
moving at a speed which can be arbitrarily large. This 
instability of  the evolution equations in the pilot wave 
interpretat ion makes it impossible to validly carry out 
a coarse-grain calculation in configuration space, as 
Bohm tried to do to show 0 ~ P. 

This instability actually implies that the closer we 
try to approximate the true value of  ~(x, t) by p(x, t), 
the worse the predictions of  tile theory become. The 
true positions of a particle or an ensemble are actually 
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O(x, t) = ~ 8(x - xN(t) )  , 

where the sunamation is over the particles. As p(x, t) 
approaches O(x, t), it ceases to be a smooth, slowly 
varying function, but instead develops sharp spikes at 
the points where the particle(s) is(are) located. Such a 
distr ibution implies a large quantum potential ,  which 
actually diverges as p(x, t) -~ O(x, t). This is a conse- 
quence of  the fact that a wave function which is a 6- 
function initially is spread out over all space the next 
instant. A theory which gives radically different results 
depending on how we choose to approximate it locally 
is termed "not  self-consistent" by Misner et al. [20] 
(see also ref. [ 16] ). They contend theories which are 
not self-consistent in this sense must be rejected, and 
they use their criteria to reject a number of  otherwise 
viable gravitation theories. 

The continuity equation (5) [and (7)] is invariant 
under time reversal, so if ~ x ,  t) 4= O(x, t) at some time 
t in the future, this inequality would also hold now, 
and for any finite time in the past. 1 claim that stan- 
dard interpretat ions of  the probabil i ty distribution, 
the assumption of  locality, and the fact that definite 
values are obtained in position measurements for ma- 
croscopically distinguishable states imply ~ x ,  t) 

o(x, t). 

The details of  the argument depend onwhich  specif- 

ic interpretat ion of  the probabil i ty distribution is used. 
Let us first suppose ~ x ,  t) measures an "intrinsic" un- 
certainty about the position of  a single particle whose 
time evolution is described by (4), (5), and (7). For  
concreteness let us consider, following Bohm [7,8], 
the inelastic scattering of  a single-particle wave packet 
off a hydrogen atom. Before the collision the wave 
function is 

~ i  = fr0(x) exp( - iE0t ) f0(Y,  t ) ,  (15) 

where fr0(x) refers to the initial state of  the atom, and 

f0(Y, t) = J e x p ( i k ' y ) f ( k  - ko) exp( - i k2 t /2m)  d k ,  

(16) 

describes the incident wave packet. The asymptotic 
form of  the wave function after the collision is 

xpf = ~ fin(X) exp(_ iEnt ) fn (y  ' t) + xP i , (17) 
n 

where 

fn(Y,  t) = f ( k  "ko)r-lgn(O, ¢, k) 

X exp[ ik  n "r - (k2/2m)t] d k ,  (18) 

is an outgoing wave packet with center r n = (kn/m)t .  
When t is very large, there is negligible overlap between 
the various outgoing wave packets. A lneasurement at 
time t would reveal the scattered particle in some def- 
inite wave packet fn(y ,  t). In other words, after the 
measurement ~ x ,  t) is narrowly peaked in one of  the 
wave packets, and is exactly zero in the other packets. 
Although theR(x ,  t) and S(x, t) fields are not required 
to propagate slower than light, physical particles are 
so restricted * 1, and so ~(x, t) must have been narrow- 
ly peaked in one of  the wave packets and zero else- 
where before the measurement. But the identification 

+ l I assume - as do Bohm, Bohr, and just about everyone 
else - that the measurement process can be analyzed with- 
out reference to relativistic modifications to Schr6dinger's 
equation. It is legitimate to invoke the fact that no particle 
can move faster than light even in the non-relativistic anal- 
ysis, because the actual relativistic equations should be 
closely approximated by the non-relativistic wave equa- 
tions at the low energies considered here. A similar argu- 
ment (combining non-relativistic equations with v < c) is 
made in all discussions of the EPR paradox [22]. 
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~ x ,  t) = O(x, t) would by the evolution equations con- 
tradict the assumption that (15) was the initial wave 
function. Hence ~ x ,  t) cannot be interpreted as some 
"intrinsic" uncertainty about the position of a single 
particle. The situation is even worse if we try to as- 
sume that the position of the particle is exactly known, 

which we must do if we really believe in the pilot wave 

interpretation. In this case ~ x ,  t) = 6(x(t)), which is 
quite different from O(x, t): at a//times. Thus the 

pilot wave interpretation has essentially the same wave 

function reduction problem that the Copenhagen in- 
terpretation has [23,24]. 

One runs into similar problems if one tries to inter- 
pret ¢(x, t) as the distribution of position measure- 
ments carried out on an ensemble of collisions, or as 
the spatial distribution of an ensemble of particles. 
The key difficulty is that one wants to equate anactual 
distribution of values ~ x ,  t) to a real physical field 
O(x, t). Thus ~b(x, t) cannot refer to an Meal ensemble 
consisting of an actual infinity of position measure- 
ments, (or in the case of an initial ensemble of parti- 
cles, an actual infinity of particles), but rather to the 
actual distribution one obtains when one runs the ex- 
periment a finite number of times, N(or  the actual dis- 

tribution of a finite number of particles). I f N  is small 
this distribution will be quite different from an ideal- 
ized distribution of position requirements in the limit 
as N ~ oo. To equate an ideal distribution to an actual 

field would be to abandon a realistic interpretation of 
probability. In contrast to statistical mechanics, O(x, t) 
is in no way an "equilibrium" distribution, so we can- 

not claim that the distribution O(x, t) is the most prob- 
able distribution. As shown above, the quantum forces 
do not tend to make ~ x ,  t) equal to O(x, t). Hence 
the only way to actually define the particle distribu- 
tion ¢(x, t) is to set up an experimental arrangement 
with wave function q/. After a finite time the experi- 

mental equipment is dismantled, and the actual ob- 
served ~ x ,  t) would be different from that required 
by Iqj21 = p(x, t) = ¢(x, t), so ~ x ,  t) :/: O(x, t) even if 
C~o(X ) = Po(X). The only way an actual infinity of mea- 
surements could have been carried out is if in fact 
there are an infinity number of universes, in each of 
which a position measurement is made. But this is the 

many-worlds interpretation, not the pilot wave inter- 
pretation. 

I should like to thank E.D. Conway, D. Deutsch and 
J.A. Goldstein for helpful discussions. 
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